skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barton, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sorting biological cells in heterogeneous cell populations is a critical task required in a variety of biomedical applications and therapeutics. Microfluidic methods are a promising pathway toward establishing label-free sorting based on cell intrinsic biophysical properties, such as cell size and compliance. Experiments and numerical studies show that microchannels decorated with diagonal ridges can be used to separate cell by stiffness in a Newtonian fluid. Here, we use computational modeling to probe stiffness-based cell sorting in ridged microchannels with a power-law shear thinning fluid. We consider compliant cells with a range of elasticities and examine the effects of ridge geometry on cell trajectories in microchannel with shear thinning fluid. The results reveal that shear thinning fluids can significantly enhance the resolution of stiffness-based cell sorting compared to Newtonian fluids. We explain the mechanism leading to the enhanced sorting in terms of hydrodynamic forces acting on cells during their interactions with the microchannel ridges. 
    more » « less